Synthesis of SiNW-rGO core-shell nanowires via low temperature process

Author:

Soam Ankur1,Kavle Pravin2,Dusane Rajiv O.3

Affiliation:

1. Department of Mechanical Engineering, Siksha O Anusandhan, Deemed to be University, Bhubaneswar, India

2. Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan

3. Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, India

Abstract

The graphene nanosheets have been deposited on silicon nanowires (SiNWs) at room temperature. SiNWs were grown by hot-wire chemical vapor process (HWCVP). A simple and room temperature approach known as electrophoretic deposition (EPD) process was adopted for the deposition of graphene sheets on SiNWs. GO sheets on SiNWs were converted to reduced graphene oxide (rGO) by photo-reduction method. EPD parameters were optimized to get a uniform coating of rGO on SiNWs. It was observed that the rGO deposition is greatly influenced by the deposition time and the applied voltage in the EPD process. rGO deposition was confirmed by FEG-SEM and FEG-TEM, and the reduction of GO to rGO was verified by Raman, UV–Vis and Fourier transform infrared (FTIR) spectroscopy.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3