Optimization analysis of variable gradient structures with shape memory characteristics in zero poisson’s ratio metamaterials

Author:

Zhou Rui1ORCID,Huang Xin2ORCID,Zhang Fangfang3ORCID

Affiliation:

1. Transportation Science and Engineering College, Civil Aviation University of China, Tianjin 300300, P. R. China

2. Aeronautical Engineering College, Civil Aviation University of China, Tianjin 300300, P. R. China

3. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350 P. R. China

Abstract

Mechanical metamaterials can achieve fantastic properties fabricated using artificial structural design. In this study, shape memory polymers (SMP) were combined to design variable gradient zero Poisson ratio mechanical metamaterials and 3D printing was used to fabricate complex structures. The shape memory performance of these structures was investigated by conducting simulation calculations to analyze the variations of zero Poisson’s ratio structures with different wall thicknesses, cell internal angles, and inclined wall length gradients. Through the analysis of structural dimension factors, it is concluded that the structures with smaller wall thickness and intracellular angle exhibit better shape memory performance. In order to further enhance the shape memory performance, several models with identical wall thickness and internal angles were designed to investigate the influence of inclined wall length gradients on shape memory characteristics, leading to the identification of optimal gradient structures. Finally, thermal cycling experiments were conducted on samples to validate the accuracy of the simulation results. The investigation of shape memory recovery characteristics in variable gradient zero Poisson’s ratio structures provides new insight and method for the optimization design and application of smart materials in mechanical metamaterial structures.

Funder

Fundamental Research Funds for Central Universities of the Central South University

Special Funds for Science and Technology Innovation in Tianjin

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3