SURFACE-PLASMON-RESONANCE BASED OPTICAL SENSING

Author:

HORING NORMAN J. MORGENSTERN1,CUI H. L.1

Affiliation:

1. Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA

Abstract

Over the past twenty years, surface plasmon resonance has been developed as an effective technique for use in real-time biotechnological measurements of the kinetics of label-free biomolecular interactions with high sensitivity.1-16 On a fundamental level, it is the dielectric-imaging involvement of the adsorbed biomolecular layer (DNA for example) in shifting the surface plasmon resonance (SPR) frequency by means of electrostatic coupling at the interface with the metal film substrate that facilitates SPR-based optical sensing. Of course, there are various factors that can influence surface plasmon resonance, including plasma nonlocality, phonons, multiplicity of layers, all of which should be carefully examined. Moreover, tunable SPR phenomenology based on the role of a magnetic field (both classically and quantum mechanically) merits consideration in regard to the field's effects on both the substrate17 and the adsorbed layer(s).18 This paper is focused on the establishment of the basic equations governing surface plasmon resonance, incorporating all the features cited above. In it, we present the formulation and closed-form analytical solution for the dynamic, nonlocal screening function of a thick substrate material with a thin external adsorbed layer, which can be extended to multiple layers. The result involves solution of the random phase approximation (RPA) integral equation for the spatially inhomogeneous system of the substrate and adsorbed layer,19-25 given the individual polarizabilities of the thick substrate and the layer. (This is tantamount to the space-time matrix inversion of the inhomogeneous joint dielectric function of the system.) The frequency poles of the resulting screening function determine the shifted surface (and bulk) plasmon resonances and the associated residues at the resonance frequencies provide their relative excitation amplitudes. The latter represent the response strengths of the surface plasmon resonances (oscillator strengths), and will be of interest in optimizing the materials to be employed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3