CARRIER CAPTURE AND TRANSPORT WITHIN TUNNEL INJECTION LASERS: A QUANTUM TRANSPORT ANALYSIS

Author:

REGISTER LEONARD F.1,CHEN WANQIANG1,ZHENG XIN1,STROSCIO MICHAEL2

Affiliation:

1. Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78758, USA

2. Departments of Bioengineering and Electrical and Computer Engineering, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60091, USA

Abstract

Hot electron distributions within the active region of quantum well lasers lead to gain suppression, reduced quantum efficiency, and increased diffusion capacitance, greater low-frequency roll-off and high-frequency chirp. Recently, "tunnel injection lasers" have been developed to minimize electron heating within the active quantum well region by direct injection of cool electrons from the separate confinement region into the lasing subband(s) through a tunneling barrier. Tunnel injection lasers, however, also present a rich physics of transport and scattering, and a correspondingly rich set of challenges to simulation and device optimization. In this work, some of the fundamental physics of carrier capture and transport that should be addressed for optimization of such lasers is elucidated using Schrödinger Equation Monte Carlo (SEMC) based quantum transport simulation. In the process, qualitative limitations of the Golden-Rule of scattering in this application are pointed out by comparison. Specifically, a Golden-Rule-based analysis of the carrier injection into the active region of the ideal tunnel injection laser would suggest approximately uniform injection of electrons among the nominally degenerate quantum well states from the separate confinement region states. However, such an analysis ignores (via a random-phase approximation among the final states) the basic real-space transport requirement that injected carriers still must pass through the wells sequentially, coherently or otherwise, with an associated attenuation of the injected current into each subsequent well due to electron-hole recombination in the prior well. Transport among the wells then can be either thermionic, or, of theoretically increasing importance for low temperature carriers, via tunneling. Coherent resonant tunneling between wells, however, is sensitive to the potential drops between wells that split the energies of the lasing subbands and (further) localozes the electron states to individual wells. In this work such transport issues are elucidated using Schrödinger Equation Monte Carlo (SEMC) based quantum transport simulation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3