Micro-Nanostructured Polymeric Scaffolds for Bone Tissue Engineering

Author:

Abdulmalik Sama1ORCID,Wijekoon Suranji1ORCID,Danazumi Khadija Basiru21ORCID,Srinivasan Sai Sadhananth21ORCID,Vobbineni Laxmi21ORCID,Obopilwe Elifho21ORCID,Kumbar Sangamesh G.213ORCID

Affiliation:

1. Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA

2. Department of Biomedical Engineering, University of Connecticut Storrs, CT 06269, USA

3. Department of Materials Science and Engineering, University of Connecticut Storrs, CT 06269, USA

Abstract

While bone tissue allograft and autograft are commonly used in bone healing, their application is limited by factors such as availability, donor site morbidity, and immune response to the grafted tissue. Tissue-engineered implants, such as acellular or cellular polymeric structures, offer a promising alternative, and are a current trend in tissue engineering. Leveraging recent advancements in bone tissue engineering (BTE), we utilize 3D printing to develop biodegradable scaffolds that combine mechanical strength and bioactivity to facilitate bone repair and regeneration. This study focuses on the design and fabrication of mechanically competent 3D printed poly (L-lactic acid) (PLLA) micro-structured scaffolds. These scaffolds are enhanced with collagen type I nanofibrils to create bioactive scaffolds that promote tissue regeneration. The performance of these mechanically competent, micro-nanostructured polymeric matrices, in combination with bone marrow stromal cells (BMSCs), is evaluated in PLLA and PLLA-collagen scaffolds. The resulting micro-nanostructured PLLA-Collagen scaffolds mimic trabecular bone architecture, mechanical strength, and the extracellular matrix environment found in native bone tissue. The composite PLLA-collagen scaffolds exhibit mechanical properties in the mid-range of human trabecular bone. Both PLLA and PLLA-Collagen scaffolds support human BMSCs adhesion, proliferation, and osteogenic differentiation. A significantly higher number of implanted host cells are distributed in the PLLA-Collagen scaffolds with greater bone density, more uniform cell distribution, and attachment compared to the PLLA microstructure. Additionally, the biomimetic collagen nanostructure potently induces osteogenic transcription evidenced by increased alkaline phosphatase activity and upregulation of bone markers such as sialoprotein and collagen type I, ultimately guiding stem cell-mediated formation of a mature, mineralized bone matrix throughout the interconnected scaffold pores. This study underscores the benefits of micro-nanostructured scaffolds in successfully generating the inductive microenvironment of native bone extracellular matrix, triggering the cascade of cellular events required for functional bone regeneration, repairing critical-sized bone defects, and ultimately serving as an alternative material platform for bone regeneration, thereby instilling confidence in the potential of our research.

Funder

the National Institutes of Health

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3