INTERACTION OF SURFACE ACOUSTIC WAVES, ELECTRONS, AND LIGHT

Author:

WIXFORTH ACHIM1

Affiliation:

1. Sektion Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, 80539 München, Germany

Abstract

The interaction of surface acoustic waves with free carriers in semiconductor nanostructures has turned out to yield a powerful tool not only for the investigation of the dynamic conductivity of such quantum systems. The latter has been shown in the study of the dynamics of the fractional and integer quantum Hall effect and many other interesting physical phenomena. The interaction is based on a relaxation type and impedance matching effect. However - to make practical use of this strong interaction, the electromechanical coupling coefficients of state-of-the-art semiconductor layered systems are too small. A hybrid technique, merging the strong piezoelectricity of LiNbO 3 or similar substrates with the excellent electronic properties of band gap engineered semiconductor quantum wells tackles this problem. Based on this new hybridization technique, several acoustoelectric high frequency devices have been realized. But also optically generated free electrons and holes in a semiconductor efficiently interact with the piezoelectric fields and potentials accompanying the surface wave. Those are able to field-ionize optically generated excitons leading to an acoustically induced quenching of the photoluminescence of a semiconductor quantum well, and to a system in which photonic signals can be efficiently converted into spatially separated electrons and holes which then can be transported over macroscopic distances along the quantum well. Finally - at a predetermined time and location on the sample – they can be reassembled into photonic signals. But also much simpler photonic devices can be realized using surface acoustic waves on semiconductor samples. For instance, we report on a simple, yet efficient camera type of device for pattern recognition and image processing.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrated Lab-on-a-Chip System in Life Sciences;Nanoscale Phenomena;2009

2. AlGaN/GaN-based SAW delay-line oscillators;Microwave and Optical Technology Letters;2008-11

3. Active SAW devices on 2DEG heterostructures;Electronics Letters;2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3