SCATTERING TIME ENGINEERING IN QUANTUM-BASED ELECTRONIC DEVICES

Author:

LEBURTON JEAN-PIERRE1

Affiliation:

1. Department of Electrical and Computer Engineering, Beckman Institute and Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Beckman Institute, 405 North Mathews Avenue, Urbana, IL 61801, USA

Abstract

The interplay between geometrical confinement and materials considerations can efficiently reduce phonon-assisted transport, enabling scattering time and dissipation engineering in quantum devices. In resonant tunneling (RT) structures, quenching of phonon-assisted transmission leading to considerable reduction of the off-resonance valley-current is shown to occur in interband devices. In structures of low dimensionality such as quantum wires, electron-phonon scattering exhibits size effects and intersubband resonances which modulates the drift velocity and conductance of one-dimensional systems. Quantum dot nanostructures offer large flexibility for reduction and modulation of dissipative processes such as oscillatory hopping conductance induced by acoustic phonons in linear chains of quantum dots or negative differential resistance curve shaping in RT through quantum dot arrays.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3