Affiliation:
1. Sensor Electronic Technology Inc. 1195 Atlas Road, Columbia, South Carolina, 2920, USA
2. Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
Abstract
We discuss physics, design, fabrication, performance, and selected applications of Deep Ultraviolet Light Emitting Diodes (DUV LEDs). Our analysis reveals the relative contributions of electrical injection, internal quantum efficiency, and light extraction efficiency to the overall DUV LED performance. Our calculations show that the reduction of the dislocation density at least below value of 2×108 1/cm3 is necessary for reaching high DUV LED efficiency. Better light extraction has been achieved using an innovative p-type transparent sub-contact layer and reflecting ohmic p-type contact resulting in nearly tripling DUV LED power. At high power dissipation, temperature rise might be significant, and we present data showing the power degradation with temperature increase and the results of the detailed 1D and 3D analysis of thermal impedance of DUV LEDs. As an example of DUV LED application, we report on microbial disinfection using 19 watt 275 nanometer DUV LED.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electronic, Optical and Magnetic Materials
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献