Affiliation:
1. Electrical and Computer Engineering Department, 371 Fairfield Way, Unit 4157, Storrs, CT 06269-4157, USA
Abstract
The critical layer thickness (CLT) determines the criteria for dislocation formation and the onset of lattice relaxation. Although several theoretical models have been developed for the critical layer thickness, experimentally-measured CLTs in ZnSe/GaAs (001) heterostructures are often at variance with one another as well as with established theories. In a previous work [T. Kujofsa et al., J. Vac. Sci. Technol. B, 34, 051201 (2016)], we showed that the experimentally measured CLT may be much larger than the equilibrium value when using finite experimental resolution. In this work, we apply a general dislocation flow model to determine the apparent critical layer thickness as a function of the experimental resolution for ZnSe/GaAs (001) heterostructures. More importantly, we compare the results utilizing different equilibrium theories and therefore varying driving forces for the lattice relaxation in order to determine which established models are consistent with several measured values of CLT for ZnSe/GaAs (001) once kinetically-limited relaxation and finite experimental strain resolution are taken into account.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献