On the choice of a phase field model for describing fracture behavior of concrete

Author:

Nguyen Hoang Quan1ORCID,Tran Bao Viet1,Le Ba Anh2,Nguyen Thanh Tung3

Affiliation:

1. Research and Application Center for Technology in Civil Engineering (RACE), Construction Engineering Faculty, University of Transport and Communications, Hanoi, Vietnam

2. Research and Application Center for Technology in Civil Engineering (RACE), Faculty of Civil Engineering, University of Transport and Communications, Hanoi, Vietnam

3. Laboratory of Solid Structures, Faculty of Science, Technology and Medicine, University of Luxembourg, 2 Avenue de l’Universite, L-4365 Esch-sur-Alzette, Luxembourg

Abstract

Numerical modeling of concrete fractures is of prime importance in the durability assessment of civil engineering structures. The phase field model has been demonstrated as a promising framework to simulate crack propagation in brittle material while using the many existing techniques. In this paper, we discuss choosing the most appropriate phase field model for describing the fracture behavior of concrete. More specifically, we present a detailed analysis of the existing models, which have been created by combining different spectral decompositions and crack density functions. The numerical simulation predictions are confronted with the experimental observation of a benchmark problem from the literature. The obtained results showed that the extensive/ compressive decomposition and the quadratic crack density function are the most suitable models to study concrete cracking behavior. The investigation’s size effects demonstrated heterogeneities played an important role in concrete’s post-cracking behavior and softening branches, especially for the small concrete structure.

Funder

Ministry of Education and Training

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation,Numerical Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3