First-principles prediction of insulating antiferromagnet in ordered double-perovskite Ca2MnMoO6 compound

Author:

Djefal A.1,Amari S.12,Obodo K. O.3,Beldi L.1,Bendaoud H.1,Bouhafs B.1

Affiliation:

1. Modeling and Simulation in Materials Science Laboratory, Physics Department, Djillali Liabès University of Sidi Bel-Abbès, Sidi Bel-Abbès 22000, Algeria

2. Faculty of Nature and Life Science, Hassiba Benbouali University of Chlef, 02000, Algeria

3. Physics Department, University of South Africa, Pretoria, 0001, South Africa

Abstract

Using first-principle calculations within the framework of density functional theory (DFT), the full-potential linearized augmented plane-wave (FP-LAPW) method have been performed to investigate structural, electronic and magnetic properties of the Ca2MnMoO6 double perovskite. Different spin configurations (ferromagnetic (FM), ferrimagnetic (FiM), and anti-ferromagnetic AFM1, and AFM2) within both generalized gradient approximation (GGA) and [Formula: see text] (Hubbard Coulomb onsite correction) were considered. The value of the Hubbard−Coulomb [Formula: see text] parameter was varied in the range of [Formula: see text][Formula: see text]eV. The ground state is found to be AFM and insulating with the AFM1 state which is the most favorable. In the AFM1 spin configuration, Ca2MnMoO6 compound has a semiconductor nature, with the fully spin-polarized valence and conduction bands in the same spin channel. Within the [Formula: see text] approximation, the FM phase has a half-metallic character with a net magnetic moment of [Formula: see text] while in the anti-ferromagnetic phase it has an insulating character with zero net magnetic moment which was found at [Formula: see text][Formula: see text]eV. We found that in the AFM phase within the GGA approximation, a metallic character is obtained for Ca2MnMoO6 and also for [Formula: see text][Formula: see text]eV. In particular, for Hubbard [Formula: see text] of 3.6[Formula: see text]eV, a small energy gap of 0.20[Formula: see text]eV is observed. The main features shown by the density of states curves motivate further experimental exploration in the double perovskite Ca2MnMoO6 for spintronic applications.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation,Numerical Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3