Imperfection sensitivity of the nonlinear axial buckling behavior of FGM nanoshells in thermal environments based on surface elasticity theory

Author:

Sahmani S.1,Aghdam M. M.1

Affiliation:

1. Department of Mechanical Engineering, Amirkabir University of Technology, P. O. Box 15875-4413, Tehran, Iran

Abstract

A size-dependent shell model which accounts for geometrical imperfection sensitivity of the axial postbuckling characteristics of a cylindrical nanoshell made of functionally graded material (FGM) is proposed within the framework of the surface elasticity theory. In accordance with a power law, the material properties of the FGM nanoshell are supposed to vary through the shell thickness. In order to eliminate the stretching-bending coupling terms, the change in the position of physical neutral plane corresponding to different volume fractions is taken into account. Based upon the virtual work’s principle, the non-classical governing differential equations are derived and then deduced to boundary layer-type ones. After that, a perturbation-based solution methodology is employed to predict the size dependency in the nonlinear instability of perfect and imperfect axially loaded FGM nanoshells with various values of shell thickness, material property gradient index and different uniform temperature changes. It was seen that for thicker FGM nanoshells in which the surface free energy effects diminish, the influence of the initial geometric imperfection on the critical buckling load is higher than its influence on the minimum load of the postbuckling domain. It is also found that through reduction of the surface free energy effects, the influence of material property gradient index on the critical end-shortening of FGM nanoshell decreases.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation,Numerical Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlocal strain gradient forced vibrations of FG-GPLRC nanocomposite microbeams;Engineering with Computers;2019-06-17

2. A numerical study on the buckling and vibration of nanobeams based on the strain and stress-driven nonlocal integral models;International Journal of Computational Materials Science and Engineering;2018-09

3. Dynamic axial crushing of bitubular tubes with curvy polygonal inner-tube sections;International Journal of Computational Materials Science and Engineering;2017-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3