Theoretical study of modified electron band dispersion and density of states due to high frequency phonons in graphene-on-substrates

Author:

Sahu Sivabrata1,Rout G. C.2

Affiliation:

1. School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India

2. Condensed Matter Physics Group, Physics Enclave, Plot No-664/4825, Lane-4A, Shree Vihar, Bhubaneswar-31, Odisha, India

Abstract

We propose here a theoretical model for the study of band gap opening in graphene-on- polarizable substrate taking the effect of electron–electron and electron–phonon (EP) interactions at high frequency phonon vibrations. The Hamiltonian consists of hopping of electrons upto third nearest- neighbors and the effect substrate, where A sublattice site is raised by energy [Formula: see text] and B sublattice site is suppressed by energy [Formula: see text], hence producing a band gap energy of [Formula: see text]. Further, we have considered Hubbard type electron–electron repulsive interactions at A and B sublattices, which are considered within Hartree–Fock meanfield approximation. The electrons in the graphene plane interact with the phonon’s present in the polarized substrate in the presence of phonon vibrational energy within harmonic approximation. The temperature-dependent electron occupancies are computed numerically and self-consistently for both spins at both the sublattice sites. By using these electron occupancies, we have calculated the electron band dispersion and density of states (DOS), which are studied for the effects of EP interaction, high phonon frequency, Coulomb energy and substrate induced gap.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation,Numerical Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3