3D waviness effect of carbon nanotubes on fundamental natural frequency and modeling of resonance of nanocomposite structure

Author:

Jha Narendra Kumar1,Kumar Santosh1,Dodla Srihari1

Affiliation:

1. Mechanical Engineering Deptt., IIT (BHU), Varanasi 221005, India

Abstract

Optimum waviness of carbon nanotubes (CNTs) inside a matrix composite beam and composite bridge is endeavor to obtain its utmost natural frequencies considering a volume fraction of CNTs. 3D FE model of the beam is generated via ABAQUS along with Python programming and thereafter to calculate an optimal waviness under encastre boundary conditions and different vibration modes. The effect of waviness and the number of waves on mode shapes, natural frequency, and corresponding stiffness of a beam are examined, and the outcomes are compared to those of a pure polymer beam, straight CNT-based composite beam and nanobridge value. It was decided to conduct a convergence analysis and the optimum value of the number of elements and nodes was studied and found that 19666 nodes are reliable to give correct results. The FE analysis results reveal that the waviness effect of CNTs significantly depends on mode shapes. The fundamental natural frequency, as well as other related vibrational properties, is observed to be enhanced. By decreasing the waviness from 50 to 25, there is an increment in natural frequency in the 3rd mode by 68.68, 5th mode by 44.6 and 6th mode by 62.4, but in other modes, there is negligible difference. When single-wave CNTs were compared, the sine wave produced more frequency in the third mode by 206.03, 4th mode by 199.8 and 6th mode by 478.6[Formula: see text]Hz. After comparing the results of different waviness types, single sine waviness, multi-waved CNTs, straight CNTs and neat matrix, it is found that for the highest value of waviness of CNT fiber-based nanocomposites, the natural frequency of CNT-reinforced nanocomposite reaches the frequency of the neat matrix and further adding of CNTs does not increase the value of frequency. The result showed that the finite element model (FEM) is a good simulation of the vibratory system.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation,Numerical Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3