Thermal and flow transfer characteristic of two-phase dusty viscoelastic Maxwell hybrid nanofluid over a porous radiative cylinder

Author:

Sarma Neelav1ORCID,Paul Ashish1ORCID

Affiliation:

1. Department of Mathematics, Cotton University, Guwahati 781001, Assam, India

Abstract

This study undertakes a numerical investigation into the two-phase magnetohydrodynamic (MHD) flow of a novel Al2O3-Ag/ethylene glycol (30%)–water dusty Maxwell hybrid nanofluid within a porous stretched cylinder incorporates the influential factor of thermal radiation. Notably, it pioneers exploration into the flow characteristics of Maxwell nanofluids and hybrid nanofluids containing dust particles over a porous cylinder, an uncharted domain in the existing literature. By adeptly simplifying the governing partial differential equations into nonlinear ordinary differential equations (ODEs) using judiciously chosen similarity variables, our research employs MATLAB’s bvp4c scheme to obtain numerical solutions, presented both graphically and in tabular form. Our results unveil significant insights: the Maxwell fluid parameter and magnetic parameter exhibit a dual effect of enhancing heat transfer while mitigating velocity gradients. Moreover, increasing the curvature parameter exerts a favorable influence on the velocity and temperature profiles of both phases. Furthermore, the fluid-particle interaction parameter emerges as a pivotal factor shaping velocity and temperature profiles in the dust phase, while the radiation parameter notably amplifies heat transfer rates. Remarkably, our investigation reveals a notable 26% increase in total skin friction and a nearly 13.5% enhancement in heat transfer within the dusty Maxwell hybrid nanofluid configuration compared to the dusty Maxwell nanofluid arrangement. These findings hold profound practical implications for addressing real-life engineering challenges, offering invaluable insights into optimizing heat transfer and velocity profiles across diverse technical applications. They pave the way for the development of enhanced cooling mechanisms and highly efficient heat exchangers, crucial for tackling multifaceted engineering challenges.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3