Influence of magnetohydrodynamics on casson nanofluid heat transfer over a radiating stretching surface

Author:

Afaq Harsa1ORCID,Azhar Ehtsham1ORCID,Jamal Muhammad12ORCID,Ali Hashmat1ORCID

Affiliation:

1. Department of Mathematics, PMAS Arid Agriculture University, Rawalpindi, Pakistan

2. Department of Mathematics, Uppsala University, Uppsala, Sweden

Abstract

Background and Objectives: This study is made to analyze the radiation effect in the flow of magnetohydrodynamic (MHD) Casson nanofluid when subjected to a magnetic field. The velocity slip over inclined nonlinear stretching surface in Forchheimer porous medium is taken into account. The Blood is considered as a base fluid and single-walled carbon nanotubes (SWCNTs) as nanoparticles in this study. The basic purpose of this study is to analyze the heat transfer and MHD effects on the Casson nanofluid which is nowhere found in previous studies and this laydown a pathway for the future researches. Significance: Growing potential of Casson fluid by considering its applications to flow and energy transfer, the current analysis can be of great significance where working fluid used is non-Newtonian in nature. Methodology: The mathematical model consisting of flow and heat equations is solved by using the Runge–Kutta fourth-order method along with shooting method in MATLAB using bvp4c solver. Results: Graphical outputs of velocity and temperature fields are obtained for various values of magnetic parameter M, Prandtl number [Formula: see text], Forchheimer parameter [Formula: see text], permeability parameter [Formula: see text] and concentration parameter [Formula: see text]. The numerical findings of coefficient of local skin friction and local Nusselt number are also tabulated. Casson fluid parameter in an increasing order impacted decreasingly on the skin friction of the fluid while magnetic number upgrade it along the sheet. The stability of fluid flow is effected by volumetric ratio of SWCNT’s nanoparticles. The boundary line temperature increases as radiation parameter rises.

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3