Numerical simulation of thermal behavior in a naturally ventilated greenhouse

Author:

Slatni Yassine1,Djezzar Mahfoud1,Messai Tarek2,Brahim Mahfoud2

Affiliation:

1. Faculty of Exact Sciences, Energy Physics Laboratory, Freres Mentouri Constantine 1 University, 25000 Constantine, Algeria

2. Department of Mechanical, University of AMO-BOUIRA, 10000, Algeria

Abstract

Inside a greenhouse, during the day, the temperature rises very quickly, while the plants have to face temperatures that rise to more than 35[Formula: see text]C. The plant closes its pores to limit sweating and stops growing. As soon as it gets hot, it is therefore necessary to ventilate the greenhouse. In this context, this research aims to investigate the behavior of the natural ventilation on the internal climate of the tunnel greenhouse, which contains two openings in the roof. The effect of the position of the openings on heat transfer is considered, thus promoting photosynthesis and plant growth. The vorticity transport equation, the Poisson equation and the energy equation are discretized by using the finite volume method. Two-dimensional simulations that described laminar flows in a steady state were carried out. Flows are studied for a range of parameters: the Rayleigh number, Ra, [Formula: see text], and three positions of opening ventilation. The results reveal that the ventilation through the top opening position allows the best creation of heat exchanges between the air inside the greenhouse and its atmosphere, which serves to conserve the plant under a favorable climate that allows its growth.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation,Numerical Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3