Investigations of the effects of particle properties on the wear resistance of the particle reinforced composites using a novel wear model

Author:

Prabhu T. Ram1

Affiliation:

1. CEMILAC, Defence R&D Organization, Bangalore, India

Abstract

A wear model is developed based on the discrete lattice spring–mass approach to study the effects of particle volume fraction, size, and stiffness on the wear resistance of particle reinforced composites. To study these effects, we have considered three volume fractions (10%, 20% and 30%), two sizes ([Formula: see text] and [Formula: see text] sites), and two different stiffness of particles embedded in the matrix in a regular pattern. In this model, we have discretized the composite system ([Formula: see text] sites) into the lumped masses connected with interaction spring elements in two dimensions. The interaction elements are assumed as linear elastic and ideal plastic under applied forces. Each mass is connected to its first and second nearest neighbors by springs. The matrix and particles sites are differentiated by choosing the different stiffness values. The counter surface is simulated as a rigid body that moves on the composite material at a constant sliding speed along the horizontal direction. The governing equations are formed by equating the spring force between the pair of sites given by Hooke’s law plus external contact forces and the force due to the motion of the site given by the equation of motion. The equations are solved for the plastic strain accumulated in the springs using an explicit time stepping procedure based on a finite difference form of the above equations. If the total strain accumulated in the spring elements connected to a lump mass site exceeds the failure strain, the springs are considered to be broken, and the mass site is removed or worn away from the lattice and accounts as a wear loss. The model predicts that (i) increasing volume fraction, reducing particle size and increasing particle stiffness enhance the wear resistance of the particle reinforced composites, (ii) the particle stiffness is the most significant factor affecting the wear resistance of the composites, and (iii) the wear resistance reduced above the critical volume fraction ([Formula: see text]), and [Formula: see text] increases with increasing particle size. Finally, we have qualitatively compared the model results with our previously published experimental results to prove the effectiveness of the model to analysis the complex wear systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation,Numerical Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3