Affiliation:
1. CEMILAC, Defence R&D Organization, Bangalore, India
Abstract
A wear model is developed based on the discrete lattice spring–mass approach to study the effects of particle volume fraction, size, and stiffness on the wear resistance of particle reinforced composites. To study these effects, we have considered three volume fractions (10%, 20% and 30%), two sizes ([Formula: see text] and [Formula: see text] sites), and two different stiffness of particles embedded in the matrix in a regular pattern. In this model, we have discretized the composite system ([Formula: see text] sites) into the lumped masses connected with interaction spring elements in two dimensions. The interaction elements are assumed as linear elastic and ideal plastic under applied forces. Each mass is connected to its first and second nearest neighbors by springs. The matrix and particles sites are differentiated by choosing the different stiffness values. The counter surface is simulated as a rigid body that moves on the composite material at a constant sliding speed along the horizontal direction. The governing equations are formed by equating the spring force between the pair of sites given by Hooke’s law plus external contact forces and the force due to the motion of the site given by the equation of motion. The equations are solved for the plastic strain accumulated in the springs using an explicit time stepping procedure based on a finite difference form of the above equations. If the total strain accumulated in the spring elements connected to a lump mass site exceeds the failure strain, the springs are considered to be broken, and the mass site is removed or worn away from the lattice and accounts as a wear loss. The model predicts that (i) increasing volume fraction, reducing particle size and increasing particle stiffness enhance the wear resistance of the particle reinforced composites, (ii) the particle stiffness is the most significant factor affecting the wear resistance of the composites, and (iii) the wear resistance reduced above the critical volume fraction ([Formula: see text]), and [Formula: see text] increases with increasing particle size. Finally, we have qualitatively compared the model results with our previously published experimental results to prove the effectiveness of the model to analysis the complex wear systems.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation,Numerical Analysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献