Affiliation:
1. International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structure, Xi’an Jiaotong University, Xi’an 710049, P. R. China
2. School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
Abstract
This study investigates the distribution and propagation of potential energy in graphene under tearing loads. Before crack extension, high potential energy accumulates at the crack tip. The distributions of the high potential energy are symmetrical and asymmetrical in pristine graphene and bi-crystal graphene with misorientation angle of [Formula: see text], respectively. When a C–C bond breaks during the fracture of graphene, numerous energy waves successively arise from the crack tip, i.e., the two atoms linked by the broken bond. These atoms lose one bond constraint and turn into unstable states, and they displace with high accelerations. In pristine graphene, the energy waves present as hexagonal geometries, while the waveforms near the loading areas are compressed to flatter geometries. In bi-crystal graphene, the refractions of potential energy waves are observed when the energy waves propagate to the grain boundary (GB) and interact with it, and the waveforms are changed after the wave crosses the GB. For both pristine graphene and bi-crystal graphene, wrinkles are generated when the crack tip extends to the site sufficiently close to the vertical free boundary, and the wrinkles are always nearly parallel to the horizontal free boundary and move along with the motion of the crack tip.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation,Numerical Analysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献