Three-dimensional finite element analysis of the effect of soil liquefaction on the seismic response of a single pile

Author:

Al-Jeznawi Duaa12,Mohamed Jais I. B.3,Albusoda Bushra S.4,Alzabeebee Saif5,Keawsawasvong Suraparb6,Forcellini Davide7

Affiliation:

1. School of Civil Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam, Malaysia

2. Department of Civil Engineering, College of Engineering, Al-Nahrain University, Jadriya, Baghdad, Iraq

3. Institute for Infrastructure, Engineering and Sustainable Management, School of Civil Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam, Malaysia

4. Department of Civil Engineering, College of Engineering, University of Baghdad, Iraq

5. Department of Roads and Transport Engineering, University of Al-Qadisiyah, Al-Qadisiyah, Iraq

6. Department of Civil Engineering, Thammasat, School of Engineering, Thammasat University, Pathumthani 12120, Thailand

7. Civil and Environmental Engineering, University of Auckland, 20 Symonds Street, Auckland 1010, New Zealand

Abstract

Soil liquefaction is considered as one of the most significant issues that leads to failure of shallow and deep foundations. However, the effect of liquefaction on the seismic response of piles still poorly understood. Therefore, this research examines the seismic response of a pile embedded in soil stratum of saturated fine-grained soils. Midas GTS/NX is used to carry out the number assessment. In addition, the modified UBCSAND soil constitutive model is used to depict the nonlinear features of saturated sand during earthquake waves. The developed three-dimensional model is first validated using the results of a shaking table test of a pile embedded in coarse-grained soil, where good agreement is obtained between the finite element model and the experimental results for the displacement, acceleration, and liquefaction ratio demonstrated good agreement. Furthermore, the orientations of the vectors produced by the numerical study, that matched a global circular flow characteristic, reflected the movement of the liquefied soil all around pile. The findings showed a considerable decrease in the pile frictional resistance during the seismic events as a consequence of increasing the pore water pressure and subsequent liquefaction. Regarding this, before the soil was entirely softened, resistance due to friction was observed near the ground, in correspondence with the loose sand layer. In addition, the pile showed excessive settling, which is due to the decrease of the soil stiffness caused by the increase of the pore water pressure. The results of this research provide an insight into the mechanism of the behavior of pile in saturated coarse-grained soils and thus, it helps to improve future research on the topic and also achieve better design of piles embedded in saturated coarse-grained soils.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation,Numerical Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3