EFFECT OF RESIDUAL STRESS AND REINFORCEMENT GEOMETRY IN AN ANISOTROPIC COMPOSITE ROTATING DISC HAVING VARYING THICKNESS

Author:

GUPTA VANDANA1,SINGH S. B.1

Affiliation:

1. Department of Mathematics, Punjabi University, Patiala-147002, Punjab, India

Abstract

The influence of the thermal residual stress and reinforcement geometry on the creep behavior of a composite disc has been analyzed in this paper. The creep analysis in a rotating disc made of Al-SiC (particle/whisker) composite having hyperbolically varying thickness has been carried out using anisotropic Hoffman yield criterion and results obtained are compared with those using Hill's criterion ignoring difference in yield stresses. The steady state creep behavior has been described by Sherby's creep law. The creep parameters characterizing difference in yield stresses have been used from the available experimental results in literature. It is observed that the stresses are not much affected by the presence of thermal residual stress, while thermal residual stress introduces significant change in the strain rates in an anisotropic rotating disc. Secondly, it is noticed that the steady state creep rates in whisker reinforced disc with/without residual stress are observed to be significantly lower than those observed in particle reinforced disc with/without residual stress. It is concluded that the presence of residual stress in an anisotropic disc with varying thickness needs attention for designing a disc.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation,Numerical Analysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3