Vibration control for slotted plate using structural intensity method

Author:

Du Xiangyu1,Huang Rong1,Vengatachalam Balaji2,Liu Zishun1

Affiliation:

1. International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049, P. R. China

2. Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore

Abstract

In this paper, we study the vibration performance of simply supported slotted plate using structural intensity (SI) method. First, the SI distribution of the slotted plate under given excitation for different slot depths is obtained using finite element methods. The SI streamline of each case shows that the SI distribution can be significantly affected by adjusting the slot depth. The optimal position of dampers which can effectively implement vibration control of slotted plate for the fixed value of exciting frequency can be obtained from the SI streamline distribution. In case of changing vibrating frequencies, a new strategy of vibration control by adding soft material (hydrogel) layers is proposed. The main advantage of this strategy is that the properties of hydrogel can be easily adjusted by changing the chemical potential, thereby achieving the desired vibration control for different excitation conditions. The effectiveness of the proposed vibration control using hydrogel layers is investigated using SI method. The SI distribution and SI streamlines of the slotted plate with the new vibration control show that the proposed strategy is convenient. Our proposed method conceptualizes a new approach toward vibration control using constrained hydrogel layer.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation,Numerical Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preface: Advances in computational aerospace materials science and engineering;International Journal of Computational Materials Science and Engineering;2018-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3