CHANGES IN GLOBAL LAND USE AND CO2 EMISSIONS FROM US BIOETHANOL PRODUCTION: WHAT DRIVES DIFFERENCES IN ESTIMATES BETWEEN CORN AND CELLULOSIC ETHANOL?

Author:

MIGNONE BRYAN K.1,HUSTER JONATHAN E.2,TORKAMANI SARAH1,O’ROURKE PATRICK3,WISE MARSHALL2

Affiliation:

1. ExxonMobil Technology and Engineering Company, Annandale, NJ 08801, USA

2. Pacific Northwest National Laboratory — Joint Global Change Research Institute, College Park, MD 20740, USA

3. University of Maryland, College Park, MD 20742, USA

Abstract

Land use change (LUC) CO2 emissions associated with bioenergy production depend on the amount of land required to produce bioenergy crops, the carbon stored in such crops (including in the leaves, stalk, roots and soil), and the carbon emitted when another land cover is directly or indirectly displaced as a result. In this study, we use a global integrated assessment model [the Global Change Analysis Model (GCAM)] to explore the differences in estimates of LUC CO2 emissions for two crops (corn and switchgrass) used to produce ethanol in the United States under alternative assumptions about natural lands protection. Varying the latter assumptions for corn ethanol results in net LUC CO2 emissions between 7 and 41 gCO2 per MJ of ethanol, whereas varying the same assumptions for switchgrass ethanol results in net emissions between [Formula: see text]26 and 14 gCO2 per MJ of ethanol. The low-end estimate for each occurs when natural lands are assumed to be fully protected everywhere, which leads to significant cropland intensification. The high-end estimate for each occurs when natural lands are assumed to be unprotected everywhere, leading to greater cropland expansion and associated conversion of unmanaged forest and pasture. Results from this study could be used to inform scenarios of future energy system change or life cycle assessment of biofuels for which LUC emissions would be an input.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Management, Monitoring, Policy and Law,Economics and Econometrics,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3