High-Frequency Trading Meets Online Learning

Author:

Fernandez-Tapia Joaquin1

Affiliation:

1. Laboratoire de Probabilités et Modèles Aleatoires, UMR 7599, Université Paris 6, 4, Place Jussieu, F-75252 Paris Cedex 5, France

Abstract

We propose an optimization framework for market-making in a limit order book, based on the theory of stochastic approximation. The idea is to take advantage of the iterative nature of the process of updating bid and ask quotes in order to make the algorithm optimize its strategy on a trial-and-error basis (i.e., online learning) using a variation of the stochastic gradient-descent algorithm. An advantage of this approach is that the exploration of the system by the algorithm is performed in run-time, so explicit specifications of price dynamics are not necessary, as is the case in the stochastic-control approach [(Gueant et al., 2013, Dealing with the Inventory Risk: A Solution to the Market Making Problem, Mathematics and Financial Economics 7(4), 477–507)]. For price/liquidity modeling, we consider a discrete-time variant of the Avellaneda–Stoikov model [(Avellaneda, M. and S. Stoikov, 2008, Liquidation in Limit Order Books with Controlled Intensity, Mathematical Finance 24(4), 627–650)] similar to its developent in the paper of Laruelle et al. [(Laruelle et al., 2013, Optimal Posting Price of Limit Orders: Learning by trading, Mathematics and Financial Economics 7(3), 359–403)] in the context of optimal liquidation tactics. Our aim is to set the ground for more advanced reinforcement learning techniques and to argue that the rationale of our method is generic enough to be extended to other classes of trading problems besides market-making.

Publisher

World Scientific Pub Co Pte Lt

Subject

Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3