Affiliation:
1. Department of Mathematics and Mechanics, Yerevan State University, Alex Manugian 1, Yervan 0025, Armenia
Abstract
It is proved that the group of automorphisms Aut (B(m, n)) of the free Burnside group B(m, n) is complete for every odd exponent n ≥ 1003 and for any m > 1, that is, it has a trivial center and any automorphism of Aut (B(m, n)) is inner. Thus, the automorphism tower problem for groups B(m, n) is solved and it is showed that it is as short as the automorphism tower of the absolutely free groups. Moreover, the group of all inner automorphisms Inn (B(m, n)) is the unique normal subgroup in Aut (B(m, n)) among all its subgroups, which are isomorphic to free Burnside group B(s, n) of some rank s.
Publisher
World Scientific Pub Co Pte Lt
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献