Affiliation:
1. Department of Mathematics, University of Denver, 2280 S. Vine St., Denver, CO 80208, USA
Abstract
The finite embeddability property (FEP) for knotted extensions of residuated lattices holds under the assumption of commutativity, but fails in the general case. We identify weaker forms of the commutativity identity which ensure that the FEP holds. The results have applications outside of order algebra to non-classical logic, establishing the strong finite model property (SFMP) and the decidability for deductions, as well as to mathematical linguistics and automata theory, providing new conditions for recognizability of languages. Our proofs make use of residuated frames, developed in the context of algebraic proof theory.
Publisher
World Scientific Pub Co Pte Lt
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献