HNN EXTENSIONS OF SEMILATTICES

Author:

YAMAMURA AKIHIRO1

Affiliation:

1. Communication System Division, Communications Research Laboratory, 4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan

Abstract

The main purpose of this paper is to investigate properties of an HNN extension of a semilattice, to give its equivalent characterizations and to discuss similarities with free groups. An HNN extension of a semilattice is shown to be a universal object in a certain category and an F-inverse cover over a free group for every inverse semigroup in the category. We also show that a graph with respect to a certain subset of an HNN extension of a semilattice is a tree and that this property characterizes an HNN extension of a semilattice. Moreover, we look into three subclasses: the class of full HNN extensions of semilattices with an identity, the class of universally E-unitary inverse semigroups and the class of HNN extensions of finite semilattices. The first class consists of factorizable E-unitary inverse semigroups whose maximal group homomorphic images are free. We obtain a generalization of the Nielsen–Schreier subgroup theorem to this class. The second consists of inverse semigroups presented by relations on Dyck words. An inverse semigroup in the third class has a relatively easy finite presentation using a Dyck language and has solvable word problem.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HNN extensions with lower bounded inverse monoids;Communications in Algebra;2022-05-24

2. Strongly F*-inverse covers for tiling semigroups;Periodica Mathematica Hungarica;2009-12

3. Embedding theorems for HNN extensions of inverse semigroups;Journal of Pure and Applied Algebra;2007-08

4. HNN extensions of inverse semigroups with zero;Mathematical Proceedings of the Cambridge Philosophical Society;2007-01

5. A class of inverse monoids acting on ordered forests;Journal of Algebra;2004-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3