Affiliation:
1. Departamento de Álgebra, Universidad de Granada, E-18071 Granada, Spain
2. Departamento de Matemáticas, Universidad de Extremadura, E-06071 Badajoz, Spain
3. Departamento Lenguajes y Sistemas Informáticos, Universidad de Cádiz, E-11405 Jerez de la Frontera (Cádiz), Spain
Abstract
Let [Formula: see text] be the monoid generated by [Formula: see text] We introduce the homogeneous catenary degree of [Formula: see text] as the smallest N ∈ ℕ with the following property: for each [Formula: see text] and any two factorizations u, v of a, there exist factorizations u = w1,…,wt = v of a such that, for every k, d (wk,wk+1) ≤ N, where d is the usual distance between factorizations, and the length of wk, |wk|, is less than or equal to max{|u|, |v|}. We prove that the homogeneous catenary degree of [Formula: see text] improves the monotone catenary degree as upper bound for the ordinary catenary degree, and we show that it can be effectively computed. We also prove that for half-factorial monoids, the tame degree and the ω-primality coincide, and that all possible catenary degrees of the elements of an affine semigroup of this kind occur as the catenary degree of one of its Betti elements.
Publisher
World Scientific Pub Co Pte Lt
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献