COMBING NILPOTENT AND POLYCYCLIC GROUPS

Author:

GILMAN ROBERT H.1,HOLT DEREK F.2,REES SARAH3

Affiliation:

1. Department of Mathematics, Stevens Institute of Technology, Hoboken, NJ 07030, USA

2. Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

3. Department of Mathematics, University of Newcastle, Newcastle NE1 7RU, UK

Abstract

The notable exclusions from the family of automatic groups are those nilpotent groups which are not virtually abelian, and the fundamental groups of compact 3-manifolds based on the Nil or Sol geometries. Of these, the 3-manifold groups have been shown by Bridson and Gilman to lie in a family of groups defined by conditions slightly more general than those of the automatic groups, i.e. to have combings which lie in the formal language class of indexed languages. In fact, the combings constructed by Bridson and Gilman for these groups can also be seen to be real-time languages (i.e. recognized by real-time Turing machines). This article investigates the situation for nilpotent and polycyclic groups. It is shown that a finitely generated class 2 nilpotent group with cyclic commutator subgroup is real-time combable, as are all 2 or 3-generated class 2 nilpotent groups, and groups in specific families of nilpotent groups (the finitely generated Heisenberg groups, groups of unipotent matrices over Z and the free class 2 nilpotent groups). Further, it is shown that any polycyclic-by-finite group embeds in a real-time combable group. All the combings constructed in the article are boundedly asynchronous, and those for nilpotent-by-finite groups have polynomially bounded length functions, of a degree equal to the nilpotency class, c; this verifies a polynomial upper bound on the Dehn functions of those groups of degree c+1.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Groups, Languages and Automata;LOND MATH T;2017

2. COMBABLE GROUPS HAVE GROUP COHOMOLOGY OF POLYNOMIAL GROWTH;The Quarterly Journal of Mathematics;2006-06-01

3. The Dehn Function of PSL2(Z[1/p]);Geometriae Dedicata;2003-12

4. Hairdressing in groups: a survey of combings and formal languages;The Epstein Birthday Schrift;1998-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3