On palindromic width of certain extensions and quotients of free nilpotent groups

Author:

Bardakov Valeriy G.12,Gongopadhyay Krishnendu3

Affiliation:

1. Sobolev Institute of Mathematics, Novosibirsk State University, Novisibirsk 630090, Russia

2. Laboratory of Quantum Topology, Chelyabinsk State University, Bratév Kashirinykh Street 129, Chelyabinsk 454001, Russia

3. Department of Mathematical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S.A.S. Nagar, P.O. Manauli 140306, India

Abstract

In [Bardakov and Gongopadhyay, Palindromic width of free nilpotent groups, J. Algebra 402 (2014) 379–391] the authors provided a bound for the palindromic widths of free abelian-by-nilpotent group ANn of rank n and free nilpotent group N n,r of rank n and step r. In the present paper, we study palindromic widths of groups [Formula: see text] and [Formula: see text]. We denote by [Formula: see text] the quotient of the group Gn = 〈x1, …, xn〉, which is free in some variety by the normal subgroup generated by [Formula: see text]. We prove that the palindromic width of the quotient [Formula: see text] is finite and bounded by 3n. We also prove that the palindromic width of the quotient [Formula: see text] is precisely 2(n - 1). As a corollary to this result, we improve the lower bound of the palindromic width of N n,r. We also improve the bound of the palindromic width of a free metabelian group. We prove that the palindromic width of a free metabelian group of rank n is at most 4n - 1.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Palindromic width of graph of groups;Proceedings - Mathematical Sciences;2020-02-15

2. Palindromic width of wreath products;Journal of Algebra;2017-02

3. Palindromic automorphisms of free nilpotent groups;Journal of Pure and Applied Algebra;2017-02

4. Palindromic widths of nilpotent and wreath products;Proceedings - Mathematical Sciences;2016-07-29

5. Palindromic Width of Finitely Generated Solvable Groups;Communications in Algebra;2015-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3