Affiliation:
1. Department of Mathematics, Texas A&M University, College Station, Texas 77843, USA
2. Department of Mathematics, University of Chicago, Chicago, Illinois 60637, USA
Abstract
The techniques of modules and actions of groups on rooted trees are applied to study the subgroup structure and the lattice subgroup of lamplighter type groups of the form ℒn,p = (ℤ/pℤ)n ≀ ℤ for n ≥ 1 and p prime. We completely characterize scale invariant structures on ℒ1,2. We determine all points on the boundary of binary tree (on which ℒ1,p naturally acts in a self-similar manner) with trivial stabilizer. We prove the congruence subgroup property (CSP) and as a consequence show that the profinite completion [Formula: see text] of ℒ1,p is a self-similar group generated by finite automaton. We also describe the structure of portraits of elements of ℒ1,p and [Formula: see text] and show that ℒ1,p is not a sofic tree shift group in the terminology of [T. Ceccherini-Silberstein, M. Coornaert, F. Fiorenza and Z. Sunic, Cellular automata between sofic tree shifts, Theor. Comput. Sci.506 (2013) 79–101; A. Penland and Z. Sunic, Sofic tree shifts and self-similar groups, preprint].
Publisher
World Scientific Pub Co Pte Lt
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献