On the structure of symmetric n-ary bands

Author:

Devillet Jimmy1,Mathonet Pierre2

Affiliation:

1. University of Luxembourg, Department of Mathematics, Maison du Nombre, 6, Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg

2. University of Liège, Mathematics Research Unit, Allée de la Découverte 12 - B37, B-4000 Liège, Belgium

Abstract

We study the class of symmetric [Formula: see text]-ary bands. These are [Formula: see text]-ary semigroups [Formula: see text] such that [Formula: see text] is invariant under the action of permutations and idempotent, i.e., satisfies [Formula: see text] for all [Formula: see text]. We first provide a structure theorem for these symmetric [Formula: see text]-ary bands that extends the classical (strong) semilattice decomposition of certain classes of bands. We introduce the concept of strong [Formula: see text]-ary semilattice of [Formula: see text]-ary semigroups and we show that the symmetric [Formula: see text]-ary bands are exactly the strong [Formula: see text]-ary semilattices of [Formula: see text]-ary extensions of Abelian groups whose exponents divide [Formula: see text]. Finally, we use the structure theorem to obtain necessary and sufficient conditions for a symmetric [Formula: see text]-ary band to be reducible to a semigroup.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3