REWRITING A SEMIGROUP PRESENTATION

Author:

CAMPBELL C.M.1,ROBERTSON E.F.1,RUŠKUC N.1,THOMAS R.M.2

Affiliation:

1. Mathematical Institute, University of St Andrews, St Andrews KY16 9SS, Scotland

2. Department of Mathematics and Computer Science, University of Leicester, Leicester LE1 7RH, England

Abstract

Let [Formula: see text] be a finitely presented semigroup having a minimal left ideal L and a minimal right ideal R. The main result gives a presentation for the group R∩L. It is obtained by rewriting the relations of [Formula: see text], using the actions of [Formula: see text] on its minimal left and minimal right ideals. This allows the structure of the minimal two-sided ideal of [Formula: see text] to be described explicitly in terms of a Rees matrix semigroup. These results are applied to the Fibonacci semigroups, proving the conjecture that S(r, n, k) is infinite if g.c.d.(n, k)>1 and g.c.d.(n, r+k−1)>1. Two enumeration procedures, related to rewriting the presentation of [Formula: see text] into a presentation for R∩L, are described. The first enumerates the minimal left and minimal right ideals of [Formula: see text], and gives the actions of [Formula: see text] on these ideals. The second enumerates the idempotents of the minimal two-sided ideal of [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Free idempotent generated semigroups and endomorphism monoids of independence algebras;Semigroup Forum;2016-05-26

2. Fibonacci Type Semigroups;Algebra Colloquium;2014-10-06

3. Every group is a maximal subgroup of a naturally occurring free idempotent generated semigroup;Semigroup Forum;2013-11-27

4. GROUPS OF FIBONACCI TYPE REVISITED;International Journal of Algebra and Computation;2012-12

5. FINITE PRESENTABILITY OF SEMIGROUP CONSTRUCTIONS;International Journal of Algebra and Computation;2002-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3