Affiliation:
1. Department of Mathematics, Ohio State University, 231 W. 18th Ave., Columbus, OH 43210, USA
Abstract
Given an Artin system (A,S), a conjecture of Tits states that the subgroup A(2) of A generated by the squares of the generators in S is subject only to the obvious commutator relations between generators. In particular, A(2) is a right-angled Artin group. We prove this conjecture for a class of infinite type Artin groups, called locally reducible Artin groups, for which the associated Deligne complex has a CAT(0) geometry. We also prove that for any special subgroup AT of A, A(2)∩AT=(AT)(2).
Publisher
World Scientific Pub Co Pte Lt
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献