CSP DICHOTOMY FOR SPECIAL POLYADS

Author:

BARTO LIBOR12,BULÍN JAKUB3

Affiliation:

1. Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1, Canada

2. Department of Algebra, Charles University, Sokolovská 83, Prague 186 75, Czech Republic

3. Faculty of Mathematics and Physics, Charles University, Sokolovská 83, Prague 186 75, Czech Republic

Abstract

For a digraph ℍ, the Constraint Satisfaction Problem with template ℍ, or CSP(ℍ), is the problem of deciding whether a given input digraph 𝔾 admits a homomorphism to ℍ. The CSP dichotomy conjecture of Feder and Vardi states that for any digraph ℍ, CSP(ℍ) is either in P or NP-complete. Barto, Kozik, Maróti and Niven (Proc. Amer. Math. Soc.137 (2009) 2921–2934) confirmed the conjecture for a class of oriented trees called special triads. We generalize this result, establishing the dichotomy for a class of oriented trees which we call special polyads. We prove that every tractable special polyad has bounded width and provide the description of special polyads of width 1. We also construct a tractable special polyad which neither has width 1 nor admits any near-unanimity polymorphism.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The smallest hard trees;Constraints;2023-03-25

2. Smooth digraphs modulo primitive positive constructability and cyclic loop conditions;International Journal of Algebra and Computation;2021-06-24

3. On the complexity ofH-coloring for special oriented trees;European Journal of Combinatorics;2018-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3