THE SEMIGROUPS B2 AND B0 ARE INHERENTLY NONFINITELY BASED, AS RESTRICTION SEMIGROUPS

Author:

JONES PETER R.1

Affiliation:

1. Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI 53201, USA

Abstract

The five-element Brandt semigroup B2 and its four-element subsemigroup B0, obtained by omitting one nonidempotent, have played key roles in the study of varieties of semigroups. Regarded in that fashion, they have long been known to be finitely based. The semigroup B2 carries the natural structure of an inverse semigroup. Regarded as such, in the signature {⋅, -1}, it is also finitely based. It is perhaps surprising, then, that in the intermediate signature of restriction semigroups — essentially, "forgetting" the inverse operation x ↦ x-1 and retaining the induced operations x ↦ x+ = xx-1 and x ↦ x* = x-1x — it is not only nonfinitely based but inherently so (every locally finite variety that contains it is also nonfinitely based). The essence of the nonfinite behavior is actually exhibited in B0, which carries the natural structure of a restriction semigroup, inherited from B2. It is again inherently nonfinitely based, regarded in that fashion. It follows that any finite restriction semigroup on which the two unary operations do not coincide is nonfinitely based. Therefore for finite restriction semigroups, the existence of a finite basis is decidable "modulo monoids". These results are consequences of — and discovered as a result of — an analysis of varieties of "strict" restriction semigroups, namely those generated by Brandt semigroups and, more generally, of varieties of "completely r-semisimple" restriction semigroups: those semigroups in which no comparable projections are related under the generalized Green relation 𝔻. For example, explicit bases of identities are found for the varieties generated by B0 and B2.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey on varieties generated by small semigroups and a companion website;Journal of Algebra;2023-12

2. Historical Overview and Main Results;Advances in the Theory of Varieties of Semigroups;2022-08-27

3. Projection-primitive $ P $-Ehresmann semigroups;AIMS Mathematics;2021

4. A non-finitely based involution semigroup of order five;Algebra universalis;2020-05-14

5. Restriction $$\omega $$ ω -semigroups;Semigroup Forum;2018-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3