LATTICES OF QUASI-EQUATIONAL THEORIES AS CONGRUENCE LATTICES OF SEMILATTICES WITH OPERATORS: PART II

Author:

ADARICHEVA KIRA1,NATION J. B.2

Affiliation:

1. Department of Mathematical Sciences, Yeshiva University, New York, NY 10016, USA

2. Department of Mathematics, University of Hawaii, Honolulu, HI 96822, USA

Abstract

Part I proved that for every quasivariety 𝒦 of structures (which may have both operations and relations) there is a semilattice S with operators such that the lattice of quasi-equational theories of 𝒦 (the dual of the lattice of sub-quasivarieties of 𝒦) is isomorphic to Con(S, +, 0, 𝒡). It is known that if S is a join semilattice with 0 (and no operators), then there is a quasivariety 𝒬 such that the lattice of theories of 𝒬 is isomorphic to Con(S, +, 0). We prove that if S is a semilattice having both 0 and 1 with a group 𝒢 of operators acting on S, and each operator in 𝒢 fixes both 0 and 1, then there is a quasivariety 𝒲 such that the lattice of theories of 𝒲 is isomorphic to Con(S, +, 0, 𝒢).

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Reference4 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Congruence Lattices of Semilattices with Operators;Studia Logica;2015-11-21

2. Lattices of Theories in Languages without Equality;Notre Dame Journal of Formal Logic;2013-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3