Affiliation:
1. Faculty of Mathematics and Computer Science, Department of Pure Mathematics, Amirkabir University of Technology (Tehran Polytechnic), 424, Hafez Ave., Tehran 15914, Iran
Abstract
Let G be a finite group. The prime graph Γ(G) of G is defined as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p, p′ are joined by an edge if there is an element in G of order pp′. In [G. Y. Chen et al., Recognition of the finite almost simple groups PGL2(q) by their spectrum, Journal of Group Theory, 10 (2007) 71–85], it is proved that PGL(2, pk), where p is an odd prime and k > 1 is an integer, is recognizable by its spectrum. It is proved that if p > 19 is a prime number which is not a Mersenne or Fermat prime and Γ(G) = Γ(PGL(2, p)), then G has a unique nonabelian composition factor which is isomorphic to PSL(2, p). In this paper as the main result, we show that if p is an odd prime and k > 1 is an odd integer, then PGL(2, pk) is uniquely determined by its prime graph and so these groups are characterizable by their prime graphs.
Publisher
World Scientific Pub Co Pte Lt
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献