The structure of entrance laws for time-inhomogeneous Ornstein–Uhlenbeck processes with Lévy noise in Hilbert spaces

Author:

Majid Narges Rezvani1,Röckner Michael12

Affiliation:

1. Bielefeld University, Bielefeld, Germany

2. AMSS, CAS, Beijing, P. R. China

Abstract

This paper is about the structure of all entrance laws (in the sense of Dynkin) for time-inhomogeneous Ornstein–Uhlenbeck processes with Lévy noise in Hilbert state spaces. We identify the extremal entrance laws with finite weak first moments through an explicit formula for their Fourier transforms, generalizing corresponding results by Dynkin for Wiener noise and nuclear state spaces. We then prove that an arbitrary entrance law with finite weak first moments can be uniquely represented as an integral over extremals. It is proved that this can be derived from Dynkin’s seminal work “Sufficient statistics and extreme points” in Ann. Probab. 1978, which contains a purely measure theoretic generalization of the classical analytic Krein–Milman and Choquet Theorems. As an application, we obtain an easy uniqueness proof for [Formula: see text]-periodic entrance laws in the general periodic case. A number of further applications to concrete cases are presented.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3