Meixner class of orthogonal polynomials of a non-commutative monotone Lévy noise

Author:

Lytvynov Eugene1,Rodionova Irina1

Affiliation:

1. Department of Mathematics, Swansea University, Singleton Park, Swansea SA2 8PP, UK

Abstract

Let [Formula: see text] denote a non-commutative monotone Lévy process. Let [Formula: see text] denote the corresponding monotone Lévy noise, i.e. formally [Formula: see text]. A continuous polynomial of [Formula: see text] is an element of the corresponding non-commutative [Formula: see text]-space [Formula: see text] that has the form [Formula: see text], where [Formula: see text]. We denote by [Formula: see text] the space of all continuous polynomials of [Formula: see text]. For [Formula: see text], the orthogonal polynomial [Formula: see text] is defined as the orthogonal projection of the monomial [Formula: see text] onto the subspace of [Formula: see text] that is orthogonal to all continuous polynomials of [Formula: see text] of order [Formula: see text]. We denote by [Formula: see text] the linear span of the orthogonal polynomials. Each orthogonal polynomial [Formula: see text] depends only on the restriction of the function [Formula: see text] to the set [Formula: see text]. The orthogonal polynomials allow us to construct a unitary operator [Formula: see text], where [Formula: see text] is an extended monotone Fock space. Thus, we may think of the monotone noise [Formula: see text] as a distribution of linear operators acting in [Formula: see text]. We say that the orthogonal polynomials belong to the Meixner class if [Formula: see text]. We prove that each system of orthogonal polynomials from the Meixner class is characterized by two parameters: [Formula: see text] and [Formula: see text]. In this case, the monotone Lévy noise has the representation [Formula: see text]. Here, [Formula: see text] and [Formula: see text] are the (formal) creation and annihilation operators at [Formula: see text] acting in [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3