On matrix-valued Gabor frames over locally compact abelian groups

Author:

Sinha Uttam Kumar1,Vashisht Lalit Kumar2ORCID,Das Pankaj Kumar3

Affiliation:

1. Department of Mathematics, Shivaji College, University of Delhi, Delhi 110027, India

2. Department of Mathematics, University of Delhi, Delhi 110027, India

3. Department of Mathematical Sciences, Tejpur University, Napaam, Sonitpur, Assam 784028, India

Abstract

In this paper, we study Gabor frames in the matrix-valued signal space [Formula: see text], where [Formula: see text] is a locally compact abelian group which is metrizable and [Formula: see text]-compact, and [Formula: see text] is a positive integer. First, we give sufficient conditions on scalars in an infinite combination of vectors (from a given matrix-valued Gabor frame) to constitute a new frame for the space [Formula: see text]. This generalizes a result due to Aldroubi. Second, we discuss frame conditions for finite sums of matrix-valued Gabor frames. Sufficient conditions for finite sums of matrix-valued Gabor frames in terms of frame bounds are established. It is shown that the sum of images of matrix-valued Gabor frames under bounded linear operators acting on [Formula: see text] constitute a frame for the space [Formula: see text] provided operators are adjointable with respect to the matrix-valued inner product and satisfy a majorization. Finally, we show that matrix-valued Gabor frames are stable under small perturbations.

Funder

University of Delhi

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3