Affiliation:
1. (No affiliation)
2. Universidad Autónoma de Sinaloa, Mexico
3. UNAM, Instituto de Matemáticas, Mexico
4. TurboMath, Mexico
Abstract
The boolean and monotone notions of independence lack the property of independent constants. We address this problem from a combinatorial point of view (based on cumulants defined from weights on set-partitions, in the general framework of operator-valued probability spaces). We show that if the weights are singleton inductive (SI), then all higher-order cumulants involving constants vanish, just as in the free and classical case. Our combinatorial considerations lead rather directly to mild variations of boolean and monotone probability theories which are closely related to the usual notions. The SI-boolean case is related to c-free and Fermi convolutions. We also describe some standard combinatorial aspects of the SI-boolean and cyclic-boolean lattices, such as their Möbius functions, featuring well-known combinatorial integer sequences.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献