The quantum moment problem for a classical random variable and a classification of interacting Fock spaces

Author:

Accardi Luigi1,Lu Yun Gang2

Affiliation:

1. Centro V. Volterra, Università di Roma Tor Vergata, Via Cracovia, snc 00133 Roma RM, Italy

2. Dipartimento di Matematica, Università di Bari “Alto Moro”, Via E. Orabona 4, 70125 Bari, Italy

Abstract

The fact that any classical random variable with all moments has a quantum decomposition allows to associate to it a family of quantum moments. On the other hand, a classical random variable may have several inequivalent quantum decompositions, which lead to the same classical, but different quantum moments. Even in the simplest Central Limit Theorems (CLT), i.e. those of Bernoulli type, there are examples in which the corresponding quantum moments converge to the canonical quantum moments of the associated classical random variable, and examples in which this is not the case. This poses the problem to find a constructive criterium that characterizes the quantum moments associated to the canonical quantum decomposition (which is unique) with respect to the other ones. Theorem [Formula: see text] of the present paper provides such a criterium. Theorem [Formula: see text] deals with the case when one knows a priori that the quantum moments come from a central limit theorem (the motivation of the present paper arose in this context). It gives only a sufficient condition, but simpler to verify than the necessary and sufficient conditions of Theorem [Formula: see text]. Theorem [Formula: see text] naturally leads to a classification of Interacting Fock Spaces (IFS) into three types. We construct examples showing that all these possibilities can effectively take place. On the way, we prove that all the best known deformations of Heisenberg commutation relations can be obtained as special cases of a general construction within the algebraic approach to the theory of orthogonal polynomials.

Funder

Russian Science Foundation N.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3