A note on matrix-valued orthonormal bases over LCA groups

Author:

Jyoti 1ORCID,Vashisht Lalit Kumar1ORCID

Affiliation:

1. Department of Mathematics, University of Delhi, Delhi 110007, India

Abstract

It is well known that orthonormal bases for a separable Hilbert space [Formula: see text] are precisely collections of the form [Formula: see text], where [Formula: see text] is a linear unitary operator acting on [Formula: see text] and [Formula: see text] is a given orthonormal basis for [Formula: see text]. We show that this is not true for the matrix-valued signal space [Formula: see text], [Formula: see text] is a locally compact abelian group which is [Formula: see text]-compact and metrizable, and [Formula: see text] and [Formula: see text] are positive integers. This problem is related to the adjointability of bounded linear operators on [Formula: see text]. We show that any orthonormal basis of the space [Formula: see text] is precisely of the form [Formula: see text], where [Formula: see text] is a linear unitary operator acting on [Formula: see text] which is adjointable with respect to the matrix-valued inner product and [Formula: see text] is a matrix-valued orthonormal basis for [Formula: see text].

Funder

Department of Science and Technology

IoE, University of Delhi

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On matrix-valued Riesz bases over LCA groups;International Journal of Wavelets, Multiresolution and Information Processing;2024-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3