OCCUPATION TIMES OF BROWNIAN SEGMENTS AND THE σ-FINITE WIENER MEASURE

Author:

BOJDECKI TOMASZ1,GOROSTIZA LUIS G.2

Affiliation:

1. Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland

2. Department of Mathematics, Centro de Investigación y de Estudios Avanzados, A.P. 14-740, Mexico 07000 D.F., Mexico

Abstract

We give an asymptotic result for the occupation of Borel sets of functions by the segments of recurrent Brownian motion on consecutive time intervals [n, n +1], n =0, 1, 2, …. This result provides new information on the behavior of Brownian motion, which is illustrated by examples. A formulation in terms of weak convergence of random measures on Polish space is also given. The proof is based on (a strengthened form of) the Darling–Kac occupation time theorem for Markov chains, and our result can be viewed as a "trajectorial" extension of that theorem. The main role in the occupation limit for Brownian segments is played by the σ-finite Wiener measure, which first appeared in a different context. An extension for segments of symmetric α-stable Lévy processes is also given.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics

Reference13 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3