ON RANDOM KNOTS

Author:

DIAO YUANAN1,PIPPENGER NICHOLAS2,SUMNERS DE WITT3

Affiliation:

1. Department of Mathematics, Kennesaw State College, Marietta, GA 30061, USA

2. Department of Computer Science, The University of British Columbia, Vancouver, British Columbia V6T 1W5, CA, Canada

3. Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA

Abstract

In this paper, we consider knotting of Gaussian random polygons in 3-space. A Gaussian random polygon is a piecewise linear circle with n edges in which the length of the edges follows a Gaussian distribution. We prove a continuum version of Kesten's Pattern Theorem for these polygons, and use this to prove that the probability that a Gaussian random polygon of n edges in 3-space is knotted tends to one exponentially rapidly as n tends to infinity. We study the properties of Gaussian random knots, and prove that the entanglement complexity of Gaussian random knots gets arbitrarily large as n tends to infinity. We also prove that almost all Gaussian random knots are chiral.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A first proof of knot localization for polymers in a nanochannel;Journal of Physics A: Mathematical and Theoretical;2024-08-30

2. Topology in soft and biological matter;Physics Reports;2024-07

3. Random Meander Model for Links;Discrete & Computational Geometry;2024-06-11

4. Random colorings in manifolds;Israel Journal of Mathematics;2023-09

5. Random Knotting in Fractal Ring Polymers;Macromolecules;2022-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3