ON SOME SYMPLECTIC ASPECTS OF KNOT FRAMINGS

Author:

BESANA ALBERTO1,SPERA MAURO2

Affiliation:

1. Dipartimento di Matematica "F.Enriques", Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy

2. Dipartimento di Metodi e Modelli Matematici, per le Scienze Applicate, Università di Padova, Via Belzoni 7, 35131 Padova, Italy

Abstract

The present article delves into some symplectic features arising in basic knot theory. An interpretation of the writhing number of a knot (with reference to a plane projection thereof) is provided in terms of a phase function analogous to those encountered in geometrical optics, its variation upon switching a crossing being akin to the passage through a caustic, yielding a knot theoretical analogue of Maslov's theory, via classical fluidodynamical helicity. The Maslov cycle is given by knots having exactly one double point, among those having a fixed plane shadow and lying on a semi-cone issued therefrom, which turn out to build up a Lagrangian submanifold of Brylinski's symplectic manifold of (mildly) singular knots. A Morse family (generating function) for this submanifold is determined and can be taken to be the Abelian Chern–Simons action plus a source term (knot insertion) appearing in the Jones–Witten theory. The relevance of the Bohr–Sommerfeld conditions arising in geometric quantization are investigated and a relationship with the Gauss linking number integral formula is also established, together with a novel derivation of the so-called Feynman–Onsager quantization condition. Furthermore, an additional Chern–Simons interpretation of the writhe of a braid is discussed and interpreted symplectically, also making contact with the Goldin–Menikoff–Sharp approach to vortices and anyons. Finally, a geometrical setting for the ground state wave functions arising in the theory of the Fractional Quantum Hall Effect is established.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3