TG-Hyperbolicity of virtual links

Author:

Adams Colin1ORCID,Eisenberg Or2,Greenberg Jonah3,Kapoor Kabir4,Liang Zhen5,O’Connor Kate6,Pacheco-Tallaj Natalia7,Wang Yi8

Affiliation:

1. Bascom Hall, Williams College, Williamstown, MA 01267, USA

2. 158 Eliot Mail Center, Harvard University, Cambridge, MA 02138, USA

3. 325 West End Ave Apt 1D, New York, NY 10023, USA

4. 1048 Miller Avenue, San Jose, CA 95129, USA

5. Department of Mathematics, Boston College, Maloney Hall 537, Chestnut Hill, MA 02467-3806, USA

6. Department of Mathematics MS 136, Rice University, 6100 Main Street, Houston, TX 77005, USA

7. Lowell Mail Center 313, 10 Holyoke Pl., Harvard University, Cambridge, MA 02138, USA

8. David Rittenhouse Laboratory, 209 S 33rd Street, Philadelphia, PA 19104, USA

Abstract

We extend the theory of hyperbolicity of links in the 3-sphere to tg-hyperbolicity of virtual links, using the fact that the theory of virtual links can be translated into the theory of links living in closed orientable thickened surfaces. When the boundary surfaces are taken to be totally geodesic, we obtain a tg-hyperbolic structure with a unique associated volume. We prove that all virtual alternating links are tg-hyperbolic. We further extend tg-hyperbolicity to several classes of non-alternating virtual links. We then consider bounds on volumes of virtual links and include a table for volumes of the 116 nontrivial virtual knots of four or fewer crossings, all of which, with the exception of the trefoil knot, turn out to be tg-hyperbolic.

Funder

Directorate for Mathematical and Physical Sciences

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hyperbolic knotoids;European Journal of Mathematics;2024-07-15

2. Augmented cellular alternating links in thickened surfaces are hyperbolic;European Journal of Mathematics;2023-10-13

3. Modifications preserving hyperbolicity of link complements;Algebraic & Geometric Topology;2023-07-25

4. A quantum invariant of links in T2× I with volume conjecture behavior;Algebraic & Geometric Topology;2023-06-14

5. The Jones–Krushkal polynomial and minimal diagrams of surface links;Annales de l'Institut Fourier;2022-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3