LISSAJOUS KNOTS

Author:

BOGLE M. G. V.1,HEARST J. E.2,JONES V. F. R.3,STOILOV L.3

Affiliation:

1. Water Engineering & Modelling, 766 North Mentor, Pasadena, California 91104, USA

2. Department of Chemistry, University of California, Structural Biology Division, Lawrence Berkeley Laboratory, Berkeley, California 94720, USA

3. Department of Mathematics, University of California, Berkeley, California 94720, USA

Abstract

A Lissajous knot is defined to be one isotopic to a knot which admits a parametrization (for 0≤t≤2π) [Formula: see text] Motivation for considering Lissajous knots came originally from the study of DNA molecular configurations. We will show that a Lissajous knot necessarily has Kervaire invariant zero so that the trefoil, figure-8 and the (2,5) torus knot are not Lissajous. The knot 52 can be realized with nx = 2, ny = 3, nz = 7.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Manipulating ultrafast even-order nonlinear chiral responses of L-tryptophan by polarization pulse shaping;Proceedings of the National Academy of Sciences;2024-05-31

2. Parametric formation control of multiple nanosatellites for cooperative observation of China Space Station;Astrodynamics;2024-02-08

3. An Introduction to KnotPlot;Lecture Notes in Mathematics;2024

4. Visualization of the Oscillatory Dynamics of an Island Power System;2023 Workshop on Energy Data Visualization (EnergyVis);2023-10-22

5. A lower bound on the average genus of a 2-bridge knot;Journal of Knot Theory and Its Ramifications;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3