Affiliation:
1. George Washington University, USA
2. Waseda University, Japan
3. GWU, USA
Abstract
We analyze properties of links which have diagrams with a small number of negative crossings. We show that if a nontrivial link has a diagram with all crossings positive except possibly one, then the signature of the link is negative. If a link diagram has two negative crossings, we show that the signature of the link is nonpositive with the exception of the left-handed Hopf link (possibly, with extra trivial components). We also characterize those links which have signature zero and diagrams with two negative crossings. In particular, we show that if a nontrivial knot has a diagram with two negative crossings then the signature of the knot is negative, unless the knot is a twist knot with negative clasp. We completely determine all trivial link diagrams with two or fewer negative crossings. For a knot diagram with three negative crossings, the signature of the knot is nonpositive except for the left-handed trefoil knot. These results generalize those of Rudolph, Cochran, Gompf, Traczyk and Przytycki, solve [27, Conjecture 5], and give a partial answer to [3, Problem 2.8] about knots dominating the trefoil knot or the trivial knot. We also describe all unknotting number one positive knots.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献